5 research outputs found

    Comparative analysis of bright band data from TRMM and ground radar data in Malaysia

    Get PDF
    Good knowledge of the formation and recognition of the bright band is necessary to determine the location of the melting layer. This is partly because the melting layer is one of the major hydrometeors (others include as rain, hail, and cloud) responsible for signal degradations along the slant-path, in the tropical regions of the world. These may result in signal fading, amongst others, which may lead to errors in slant-path attenuation predictions. This paper involves the comparative analysis of radar data sourced from both ground 3D RAPIC bistatic radar and space-borne precipitation radar above the Malaysian air space. For this research work, the terrestrial meteorological radar data were sourced from the Meteorological Department of Malaysia, while the satellite radar data were obtained from the near-real-time TRMM Multi-Satellite Precipitation Analysis (TMPA-RT) version 7 products. Frozen hydrometeors are observed to exhibit peculiar characteristics in terms of increased radar reflectivity as they fall from the sky, transiting from solid to liquid, and manifesting in the popular bright band signature. The melting layer is the region where melting occur, just below the 0? isotherm height. It is a major factor responsible for the problems being encountered in characterization and modelling of microwave signal propagation along the earth-space link. , Nor Hisham Khami

    Site Diversity Technique Application on Rain Attenuation for Lagos

    Get PDF
    This paper studied the impact of site diversity (SD) as a fade mitigation technique on rain attenuation at 12 GHz for Lagos. SD is one of the most effective methods to overcome such large fades due to rain attenuation that takes advantage of the usually localized nature of intense rainfall by receiving the satellite downlink signal at two or more earth stations to minimize the prospect of potential diversity stations being simultaneously subjected to significant rain attenuation. One year (January to December 2011) hourly rain gauge data was sourced from the Nigerian Meteorological Agency (NIMET) for three sites (Ikeja, Ikorodu and Marina) in Lagos, Nigeria. Significant improvement in both performance and availability was observed with the application of SD technique; again, separation distance was seen to be responsible for this observed performance improvements

    Investigating Rain Attenuation Models for Satellite Links in Tropical Nigeria

    Get PDF
    The analyses of rain models for satellite communication links of Ku and Ka bands in Lagos, Nigeria is the focus of this paper. The choice of these frequency bands was informed by the acknowledged fact that satellite signal fading and outages are predominant at those bands. The ITU-R P. 618-12 is the globally adopted prediction model; temperate, equatorial and tropical regions, inclusive. However, there was need to review the suitability of this model especially as it concerned equatorial and tropical stations. Rainfall data spanning a period of three years were collected from Nigerian Meteorological Agency (NIMET). The ITU-R P. 618-12 model along with some renowned prediction models were analyzed and their performances with the locally recorded measurement data were compared to establish their suitability or otherwise. The results obtained suggested ITU-R P. 618-12 exhibited the overall best performance at 12 GHz while DAH showed best performance at 26 GHz, even as both models underestimated and overestimated the measurement at Ku and Ka bands respectively. Again, at both frequencies, SST presented the worst performances

    Seasonal and diurnal variability of rain heights at an equatorial station

    No full text
    Seasonal and diurnal rain heights variation at Universiti Teknologi Malaysia, Johor was studied.Slant path rain attenuation prediction and modeling is crucial to satellite equipment design; a major input is the rain height. One year meteorological ground-based, S-band, 3D RAPIC precipitation radar data at 500m resolution sourced from the Malaysian Meteorological Department was complemented with two-year TRMM PR data sourced from JAXA Earth Observation Research Center. After filtering, sorting, extraction and decoding of the data, vertical reflectivity profiles were constructed; from which rain height parameters were extracted. TRMM PR processed monthly (3A25) and daily (2A23) rainfall precipitation data were similarly used to obtain rain height parameters to investigate the seasonal and diurnal variations. Results from this work suggested that rain height parameters are influenced by both seasonal and diurnal variations. Higher seasonal variability was observed during south-west and pre-southwest monsoons. Rain heights werealso observed to be higher in the night than in the day time

    Investigating rain attenuation models for satellite links in tropical Nigeria

    No full text
    The analyses of rain models for satellite communication links of Ku and Ka bands in Lagos, Nigeria is the focus of this paper. The choice of these frequency bands was informed by the acknowledged fact that satellite signal fading and outages are predominant at those bands. The ITU-R P. 618-12 is the globally adopted prediction model; temperate, equatorial and tropical regions, inclusive. However, there was need to review the suitability of this model especially as it concerned equatorial and tropical stations. Rainfall data spanning a period of three years were collected from Nigerian Meteorological Agency (NIMET). The ITU-R P. 618-12 model along with some renowned prediction models were analyzed and their performances with the locally recorded measurement data were compared to establish their suitability or otherwise. The results obtained suggested ITU-R P. 618-12 exhibited the overall best performance at 12 GHz while DAH showed best performance at 26 GHz, even as both models underestimated and overestimated the measurement at Ku and Ka bands respectively. Again, at both frequencies, SST presented the worst performances
    corecore